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The Problem

• scientific modeling codes are beginning to be 
shared much more extensively than before

• budgetary constraints

• inter-lab research cooperation

• most scientific modeling codes are Fortran 
namelist based

• input is a long text file of names and values

• no documentation

• frequently no one aside from the author of the 
program can help explain how to use it and 
what it does

• difficult to properly model the research usage 
patterns of modeling codes with a naive design
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Previous Work

• Amber (PPPL 1996)
• modeling codes are essentially a data management 

problem

• UniVista I (PPPL 1997)
• same objectives as UniVista

• partial demo, then project leader quit and project was 
abandoned and code lost

• PEST (Manickam 1998-9)
• GUI for a modeling code written in IDL

• similar graphical layout as UniVista:  variables are associated 
with UI input elements on the screen

• problems

• interface does not work for any modeling code aside from 
PEST

• user can't adapt the interface to match their research 
patterns
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The UniVista Approach

• create a flexible interface creation tool for any 
environment and modeling code

• provide tools for three different types/needs of 
users

• modeling code author

• should be easy to use to give incentive to create a GUI

• research designer

• provide a way to customize the interface to fit the style of 
research they want to do with a modeling code

• research executor

• provide an easy way to run the modeling code varying 
elements of a chosen research pattern

• allow the interface to mimic research patterns
• research builds off of previous research
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The UniVista Design

• flexibility
• achieved through proper data management with a database

• organizes and collects interfaces

• archives results for future reference and extensions

• portability through Java and Swing
• scientific community is quite diverse utilizing a variety of 

machines

• by using Java 1.1 and Swing 1.0 as a foundation, UniVista 
will run on all initial machines at the PPPL (WinNT, 
Solaris, MacOS) as well as for other labs

• Swing offers the possiblity of having an identical look on 
each platform at the same time as flexibility to use a 
native 'look and feel'
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The UniVista Design

• distributed architecture
• there can be any number of researchers on a project

• researchers may not be in the same laboratory

• all of UniVista information is stored in standard relational 
databases, including all of the information to recreate a 
graphical user interface, interfacing through JDBC

• built in database security provides robust methods for 
sharing and protecting sensitive data
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The UniVista Design

• support for research methodology
• interesting results frequently lead to further research on 

what caused those results

• UniVista studies (the user interfaces to viewing and 
changing values of the variables for a modeling code) are 
flexible

• created off of descriptions of the modeling code

• can have unique code to check whether variables 
satisfy parameters for a research area

• can be cloned off of a past run so researchers can 
take a snapshot of the conditions that led to specific 
results and quickly build an interface to allow them to 
do further directed study
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Results

• the design aspect of UniVista is complete, and 
the idea of GUIs being accepted for modeling 
codes has been shown through the PEST 
project

• development is along the path to having a 
complete working model of the design

• the final UniVista working model will be tested 
by creating a user interface for Degas, an ion 
flow modeling code from the PPPL
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Conclusions

• the proper user interface design tool for 
scientific modeling codes needs to be adaptive 
enough to respond to the particular work 
patterns of researchers

• the most powerful user interfaces are those 
which can be reconfigured to match the way the 
user wishes to use them

• the UniVista design provides UI flexibility and 
(through Java) flexibility to function in most any 
scientific computing environment
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